Synthetic Chemistry of Fine Particles, 2023

微粒子合成化学·講義

http://www3.tagen.tohoku.ac.jp/~mura/kogi/ E-mail: mura@tohoku.ac.jp

微粒子合成化学 2023/6/20

1

第1回 講義紹介・物理化学の本質について
第2回 生活の周りのナノ粒子・コロイド
第3回 生活の周りのナノ粒子・コロイド
第4回 微粒子の分散・凝集
第5回 微粒子の分散・凝集
第6回 DLVO理論一詳説
第7回 DLVO理論一詳説
第8回 単分散粒子の合成理論
第9回 機能性ナノ粒子の液相合成
第10回 機能性ナノ粒子の液相合成
第11回 環境触媒
第12回 吸着現象と触媒
第13回 単分散粒子合成と触媒調製法
第14回 単分散粒子合成と触媒調製法
第15回 微粒子合成化学

微粒子合成化学 2023/6/20

ゲルーゾル法

東北大学多元研における研究 杉本,村松,蟹江による,ユニークな単分散粒子合成法!

単分散粒子合成のための一般的指針 ~ゲルーゾル法はどうアプローチしたか?

成長する粒子を

濃厚ゲル内に

固定化し、ブラ

ウン運動抑止.

して濃厚ゲルや

錯体を想定.

1. 核生成と粒子成長の分離 ゲルーゾル法に おいても核生成 2. 粒子間凝集の防止/ と粒子成長の分 離は可能. 3. 粒子前駆体の確保 (T. Sugimoto, Adv. Colloid Interface Sci. 28, 65 (1987). ゲルーゾル法に おける前駆体と

固液混合相中の液相は、希薄系と何ら変わらない!

それぞれの時間の差を大きくすることで、見かけ上、分離できる。

2023/6/20

微粒子合成化学

凝集防止機構

ヘマタイト(α-Fe2O3)粒子が β-FeOOHゲル網に固定化 される ↓ ブラウン運動がきっかけとな る凝集機会が失われる

ゲル網の中で順調に成長

非晶質水酸化鉄 Fe(OH)₃ ↓ 含水酸化鉄(アカガナイト) β-FeOOH ↓ α酸化鉄(ヘマタイト)α-Fe₂O₃

溶解·再析出機構

ゲルーゾル法

-

ヘマタイト単分散粒子の大量合成

1) ヘマタイト粒子が生成する溶液条件(温度、pH等)を 設定

- 2) β-FeOOH が中間化合物として形成され、最終的には 副生成物なしでヘマタイトのみが生成
- 3) 核形成は最初の最大 8 時間だけで終了し、その後粒子は 1 週間成長する

4) 粒子を水酸化第二鉄とβ-FeOOHのゲルネットワーク に捕捉し、ブラウン運動のように容易に移動できないよう にすることにより、粒子間の凝集を完全に抑制する

ゲルーゾル法による 単分散へマタイト粒子の合成

2µm

10

ゲルーゾル法の要点

ゲル-ゾル法の要点はつぎのとおりである

- 1) 固相前駆体の溶質濃度はLaMerモデルにしたがい、十分に下げ、制御できる範囲とする。
- 2) 前駆体溶質の供給源を別途用意する。
- 3) 濃厚溶液中で粒子が凝集しないようにする。

濃厚水酸化ニッケル懸濁液からの 均一金属ニッケル粒子の合成

12

Ni(OH)2 懸濁液 With PEG

50°C, 12 hours 生成物 - 0.1 M Ni(OH)₂ + 4 M NaH₂PO₂ - 0.5 wt% PEG(分子量400,000)

ゲル-ゾル法によるスピンドル型 均一チタニア粒子の合成 チタンイソプポキシド: 0.5 M トリエタノールアミン: 1.0 M (急激な加水分解の防止剤) 2M アンモニア水 高粘性のゲル状物質 スピンドル型均一チタニア粒子 2023/6/20 0.1 μm 做粒子合成化学

14

図9 ゲルーゾル法による単分散酸化チタン(チタニア)粒子合成スキーム

2023/6/20

0.2 μm

図3 スピンドルチタニア粒子合成の経時変 化の様子。(a) 0, (b) 1日, (c) 2日, (d) 3日。

Concentration changes of TiO_2 , $Ti(OH)_4$, and supernatant Ti^{4+} ions during the 2nd aging (pH = 10)

<u>16</u>

単分散金属硫化物粒子

17

粘度が低いので、ゼラチンを投入することにより、粒子のブラウン運動を抑制

微粒子合成化学

BaTiO₃, SrTiO₃

ペロブスカイト系酸化物の合成

ゲルーゾル法を用いると液相からの直接合成が可能 である 19

市販品は固相反応でつくっている

Synthesis method of BaTiO₃/SrTiO₃ fine particles

Cubic BaTiO₃

本研究で合成した BT01 BT02 市販品 BT03 200 nm (High Purity Chemicals) (Wako Pure Chemicals) 21

XRD

22

TG curves in Ar

23

Cubic SrTiO₃

24

XRD

25

TG curves in Ar

<u>26</u>

2023/6/20 微粒子合成化学

27

粒子形態制御

2023/6/20

特定の結晶面に選択的に吸着

平衡形と成長形

・平衡論的制御と、速度論的制御 ほとんどの場合は成長形

一部、鉱物などで平衡形が見られる

成長形は各面の法線方向への成長速度の差によっ て生まれる 28

したがって、成長速度に差をつければ粒子の形態を制御できる。

Synthesis of Monodispersed Anisotropic TiO₂ Particles

Gel-Sol Method: Particle Preparation Technique by using Metal Hydroxide Gels

Synthesis of Monodispersed Anisotropic TiO₂ Particles

•Ti(OPrⁱ)₄

- Stabilizer (N(CH₂CH₂OH)₃)
- Shape Controller
 (Amine, Amino Acid)

pH Controller

2023/6/20 微粒子合成化学

29

T. Sugimoto, *"Monodispersed Particles,"* Elsevier, Amsterdam, 2001. K. Kanie and T. Sugimoto, *Chem. Commun.*, **2004**, 1584.

Anisotropic TiO₂ Particles Obtained by the "Gel-Sol" Method

Ethylenediamine Init pH: 10.5

Ethylenediamine Init pH: 10.5, Seeds

Succinic Acid Init pH: 10.5

Gluconic Acid Init pH: 9.5

Glutamic Acid Init pH: 10.5

Oleic Acid Init pH: 11.5

none Init pH: 10.5

Oleic Acid Init pH: 9.9

2023/6/20 微粒子合成化学 T. Sugimoto, X. Zhou, and A. Muramatsu, *J. Colloid Interface Sci.*, **259**, 53 (2003). K. Kanie and T. Sugimoto, *Chem. Commun.*, **2004**, 1584.

単分散へマタイト粒子の形態制御

2µm

<u>32</u>

<u>33</u>

硫酸根による形態制御

<u>34</u>

35

★ この結果より、SO₄²⁻の側面への強い吸着が示唆される。

硫酸根吸着量へのpH効果

★ pH 4以上では、ほとんど SO₄²⁻ は吸着しない。これは、OH⁻ 2023/6/20 ^{2023/6/20} との競争吸着によるものであろう。(ヘマタイトの等電点=7.5) ^{微粒子合成化学}
SO₄²⁻イオンのピーナツ粒子内分布

EDX解析

超薄切片TEM写真

<u>37</u>

★ SO₄²⁻は添加量の約 90%が粒子内に取り込 まれ、表面及び内部に ほぼ均一に分布してい る。

2023/6/20 微粒子合成化学

★ 粒子内に残存する硫酸根はアンモニア処理で脱着し、100℃における吸着処理で再び吸着する。また、吸着種は粒子内に残存していた硫酸種と同じである。
 ★ 異方成長はフリーの硫酸根の特定の面への吸着によるものである。

38

形態制御は硫酸根の特定の面へ の吸着によりものであり、溶液相で 硫酸根に由来する錯体が生成しそ れが、異方成長に参加した可能性 はない。

2023/6/20 微粒子合成化学 硫酸根の吸着量など (pH 1, 100°C, 24h)

40

粒子	比表面積	最大吸着量	占有面積	
	m²/g	µmol/m²	Å ²	
エリプソイド	12.4	3.60	46.1	
擬似立方体	2.67	3.16	52.6	
厚い平板	2.10	2.28	72.9	
薄い平板	0.70	0.86	193	

ピーナツ型へマタイト ↓ 比表面積: 61.2 m²/g ↓ 最大吸着量 5.59 µmol/m² (29.7 Ų) ★ 最大吸着量:

 \star

エリプソイド>擬似立方体>厚い平板>薄い平板

c軸に平行な面に強く吸着。

c面への吸着力は低い。

厚い平板への吸着量が多い理由は、{012}面が発達しているからであろう。

★ 側面及び{012}面への吸着はc面{001}面より 圧倒的に強い。

- ★ SO₄²⁻のO-O間距離(2.45Å)はc面のFe-Fe間 距離(2.91Å)より側面のそれ(2.29Å)に近いので、 SO₄²⁻の場合はc面へは1点吸着、側面または {012}面へは2点吸着であると考えられる。
- ★ α-FeOOH(針状晶)の側面のFe-Fe間距離 (3.15Å)はSO₄²⁻のO-O間距離より大きく離れてい るので1点吸着となる。

<u>44</u>

2023/6/20

凝集機構ではない

生成した粒子が多結晶だと、凝集して成長したように見える!

2023/6/20 0.05 μm

2 赵阳子合成化学

<u>45</u>

<u>46</u>

1. 成長する粒子に選択的に凝集?
 一次粒子同士、成長する粒子同士の凝集はなぜないのか?
 (これらの凝集が起こると、単分散粒子)

(これらの凝集か起こると、単分散粒子は得られない)

47

2. 一次粒子の生成は溶質の析出では?

ー次粒子や核が生成する機構は、溶質の析出であり、成長中一次粒子も生成しているとすると、その間は、一次粒子の生成が溶質の析出、粒子成長は凝集で、と機構が分かれて併発しているということになる。

このヘマタイトは単結晶だけど,凝集機構で成長したものと 解釈している研究者が存在する. それを,実験事実から,否定していく.

合成条件

2.0x10⁻² mol dm⁻³ FeCl₃ and 4.5x10⁻⁴ KH₂PO₄ at 100 °C

48

凝集機構の成長モデルを支持する論文多い

M. Ocana, M. Morales, and C.J. Serna: J. Colloid Interface Sci. 171 (1995) 85. M. Ocana, R. Rodriguez-Clemente, C.J. Serna: Adv. Mater. 7 (1995) 212.

<u>49</u>

7 days 4 days Intensity (a.u.) days 1 day 8 hours 0 L 20 40 60 80 2θ(degree, CuKα) 微粒子合成化学 2023/6/20

XRD

- β –FeOOH was first formed.
- αFe_2O_3 was formed at the expense of it.

<u>50</u>

FT-IR

• Even after 7 days, β -FeOOH remained. <u>51</u>

Solid concentration

<u>52</u>

Soluion

- First, pH was rapidly decreased.
- PO₄³⁻ conc. was gradually decreased.

種添加による成長機構の解明

0.1 μm

種添加

 凝集機構なら全体の反応速度は 変化しない。

- なぜなら凝集機構では平衡関係
 にある一次粒子が粒子成長速度
 を担っている。
- 溶質の直接析出なら、種添加で 全体の表面積が大きくなるので 速度は速くなる。
- 添加する種の数に粒子数は依存 する。

Run 1 種なし Run2 種量・少 Run3 種量・多

<u>56</u>

生成速度への効果

57

種添加量が増すに従い、見かけの生成速度は増大

従って、凝集機構の可能性はない。

加えて、生成物が単結晶で あること、生成経路で一次粒 子が観察されないこと、など が決めてとなった。

粒子成長=溶質の直接析出 ≠凝集機構

		Nucleus number (dm ⁻³)			Products			
Run	Aging time (day)	Seeds	Spontaneous nuclei	Total	Yield (mol%)	Size (µm)	Aspect ratio	Particle number (dm ⁻³)
Run	(uay) 7	0	8.4x10 ¹³	8.4x10 ¹³	77.8	0.67	6.7	8.4x10 ¹³
1 (a)								
Run	4	2.7x10 ¹⁴	8.4x10 ¹³	3.5x10 ¹⁴	94.2	0.46	6.5	2.9x10 ¹⁴
2 (b)			40					45
Run	2	2.7x10 ¹⁵	8.4x10 ¹³	2.8x10 ¹⁵	97.7	0.22	6.3	2.5x10 ¹⁵
3 (c)								

2023/6/20

サイズと形態、内部構造の系統的制御

ゲルーゾル法単分散へマタイト粒子合成

残留塩素CIによる結晶化阻害 ~本来単結晶になるはずが多結晶になってしまう~

61

形態制御材無添加時の粒子成長の様子(透過電子顕微鏡)

8 h

<u>63</u>

ì成化学

生成核数によるサイズ制御

FeCl₃とNaOH混合時の溶液温度を制御(透過電子顕微鏡)

微粒子合成化学

64

シーズ(種)使用によるサイズ制御

シーズ(種)転化によるサイズ制御(透過電子顕微鏡)

<u>65</u>

形態制御剤・リン酸根 Na₂HPO₄

微粒子合成化学

<u>66</u>

シーズ量一定 形態制御剤・硫酸根 濃度変化

<u>68</u>

<u>69</u>

<u>70</u>

2

2023/6/20

彻

<u>71</u>

<u>73</u>

ジルコニア

チタニアの応用

2023/6/20

BACKGROUNDS

1 General Requirements for the Preparation of Monodispersed Particles

- 1. Separation between nucleation and
 - growth stages
- 2. Inhibition of coagulation
- 3. Reserve of monomers

(T. Sugimoto, Adv. Colloid Interface Sci. 28, 65 (1987).)

74

"We need a new method to overcome the essential problem of coagulation so as to achieve a high productivity."

"Gel-Sol Method"

75

3 Role of Each Component to prepare ZrO₂ particles

76

• **TEOA** = triethanolamine

 as a complexing agent with Zr proposide to make stable complex, releasing ZrO2 monomers gradually

• Ammonia

– as an inhibition of anisotropic growth

<u>78</u>

2023/6/20

<u>80</u>

Transformation from $Zr(OH)_2$ to ZrO_2 virtually finished within 1 hour.

<u>82</u>

Though the particles at 60 min were of rough surfaces, they became spherical by degrees with further aging. This morphological change seems to be due to the intra-particle recrystallization, but the ordinary Ostwald ripening concurrently proceeds.

Effects of TEOA/ZNP ratio, temperature and concentration of NH₃ b) T/Z=1.1, 140°C (3days) c) T/Z=1.1, 200°C (3days) a) T/Z=1.1, 120°C (6days) Fig. 8 d) T/Z=3.0, 160°C (3days) e) T/Z=3.0, 200°C (3days) f) Same as e), but no NH₃ 100 nm

T/Z = TEOA/ZNP

TEOA/ZNP As TEOA/ZNP increases, the uniformity is improved. 83

Temperature

As temperature is elevated, the uniformity is improved, the mean size is decreased, and surfaces become smoother.

Ammonia

As [NH₃] increases, shape of ZrO₂ changes from rectangular parallelepiped to spheroid at pH 10.7.

Effects of pH and acetate without NH₃

d) pH 6.9 (HNO₃)

High pH (13.4) >>very large sharp-edged size distribution: large pH: decrease >> size: decrease size distribution: narrow shape: irregular polyhedra rods smooth-surface spheroids Acetate (pH 7.1) >> ultrafine in size Reduction of the growth rate of ZrO₂ nuclei with

84

descending pH, due to the decreasing concentration of hydroxide complexes

100

nm

Characterization of ZrO₂ particles

<u>85</u>

All particles are basically single crystals, even if they are irregular in shape. The spherical particles of sample (a) are formed by intra-particle recrystallization of irregular-shaped particles like those of samples (b) and (c)

ITO

2023/6/20

先端材料分野で実用化された単分散粒子

最先端ナノ材料の例として・・・

ITO (スズドープ酸化インジウム) スマフォやタブレットPC,次世代太陽電池に必要な材料

微粒子合成化学

87

液晶ディスプレイと透明導電膜

タッチパネルの構造バリエーション スマートフォンの導電性

2023/6/20

微粒子合成化学 ※ OGS (One Glass Solution: コーニング), TOL (Touch On Lens) <u>90</u>

チコちゃんに叱られる!

タッチパネルはなぜ触っただけで反応する? →チコっと感電しているから

93

柔らかな液晶ディスプレイは プラフィルム + ITOナノインクで

印刷微細配線形成技術を応用したアプリ例:タッチセンサー・パネル (全光線透過率:85%以上、ヘーズ:2.0%以下、表面抵抗:35Ω/□)

微粒子合成化学

2023/6/20

95

現状の液晶セルの製造プロセス

現状の透明導電膜(ITO膜)の作成は、PVD法. 高エネルギー&高温処理のため. ガラス基板が必須. 高分子フィルムには適用できない ⇒ ソフトフィルムは不可能

スズドープ酸化インジウム(ITO)とは

98

3

スパッタ法の問題

これを解決するには、サイズが10~20nm、形を立方体状にして、かつ、粒子 を恋れいに並べて、低温で処理する技術を開発することが、必要不可欠!

ITOナノインク塗布膜の作成 ITOナノインク 粒子膜 ITOナノ粒子 塗布 溶媒 基板

<u>100</u>

ITO粒子は水溶液から直接は得られなかった・・・・

非晶質 ln(OH)₃ ゲルの形成

In(OH)₃ 微粒子の生成

ITO 微粒子の生成

ゲルーゾル法と熱処理による ITO 微粒子合成

なぜ、水溶液からの加水分解反応でアルミナはできないか

図 加水分解法金属酸化物粒子合成の限界

ITOナノ粒子合成

オートクレーブを用いた粒子合成

インジウム塩,スズ塩,塩基

最初の直接合成法 ITOナノ粒子

10

最初にゲル生成しないため,凝集を防止できず,単分散粒子と ならなかった・・・

2023/6/20 微粒子合成化学

実験方法

105

ITO nanoparticles

Solvent Effect

溶媒の効果

(In³⁺: OH⁻ = 1:3、250°C、12 hで合成)

BuOH

DEG

<u>106</u>

EG 80vol% + H₂O 20vol%

2023/6/20 微粒子合成化学

Solvent Effect

溶媒の効果

(In³⁺: OH⁻ = 1:3、250℃、12 hで合成)

<u>107</u>

2023/6/20 微粒子合成化学

立方体状ITOナノ粒子の分析

108

HR-TEMICて粒子全体に均一な格子縞を観察

・ 100)に囲まれた単結晶の

・ 100)に囲まれた単結晶の

・ 立方体状ITO粒子

FFT像にてストリークを観察

2023/6/2 EDSおよびICP分析

かいたいのでは、

Snを仕込み比通り(In: Sn = 1: 0.1)に含有
NEDO 「希少金属代替材料開発プロジェクト」 電極向けインジウム使用量低減技術開発

透明電極向け ITO ナノインク開発

東北大学 三井金属鉱業株式会社 DOWA エレクトロニクス株式会社

実用化ITOナノ粒子

11

2012年にサンプル出荷開始した粒子の合成 水酸化ナトリウム以外の塩基による濃厚ゲル生成

2023/6/20 微粒子合成化学

単分散ITO (すずドープ酸化インジウム)ナノ粒子合成 ゲルーゾル法と、ソルボサーマル法のコンビネーション

0.50 M InCl₃ & 0.050 M SnCl₄ in Ethylene glycol (EG) solution Stirred at 0 °C 1.5 M TMAH in FG solution ([TMAH] = 1.5, 2.0, 2.5)Stirred for 15 min Put 10 ml of suspension into autoclave Aged at 250 °C, 0 ~ 96 h Washed by EtOH, H₂O and centrifuged **Products** (Analysis: XRD, TEM)

均一核生成のみ起こさせ、不均一核生成は起こさせず、かつ、凝集しない系を実現!

111

Time dependence of particles growth

Reaction condition: TMAH 2.0 M, 250 °C

The particles grow at the expense of amorphous products initially fomred

微粒子合成化学

微粒子合成化学

大型リアクターを用いた透明導電性ナノ粒子大量合成

温度: ~250 ℃ 耐圧: 100 bar

テフロン内筒 (2000 mL) ^{>>}

合成量:~30 g

合成量:~0.3 g

微粒子合成化学

ITO ナノ粒子インク化

ITO ナノインク

<u>116</u>

ITO代替ナノインク

ITO代替材料も研究対象

- AZO = Aluminum doped Zinc Oxide
- GZO = Gallium doped Zinc Oxide
- ATO = Antimony doped titanium oxide

2023/6/20

3/9	化学工業日報	4 面	
功。さらに、溶媒中で高 るととで低抵抗、高い結 たどの粒径や結晶形状を コントロール、最適化す るととで低抵抗、高い結 度と従来より低温化し、 最適化す たが通ば10のマイナス3 日生ノ粒子の作成に成 来〜4乗45が、透明性 たの支援した。 あり、低抵抗のITO 低成温度も200度C程 により、低抵抗のITO	東北大学、アルバック、三井金属、DOWA スリ上低い抵抗値を示すインジウム・スズ酸化 タリ上低い抵抗値を示すインジウム・スズ酸化 ウム使用量を10%低減することに成功した。透 明性も96%以上を達成している。同グループは 被晶パネルやタッチパネル、色素増感型太陽電 池の電極として、2020年をめどに実用化を	東北大学など開発	0 X 2
	フォンなどの透明電極とフォンなどの透明電極と	ノインキンションの再生	
	する祖外国多た社会にすている。	まる研究開発が増えてお して使用量が増えてお の、希少金属であるイン	
	よって最適な手法を選択いく。	よるスパッタリング法に しかし実用化には低抵抗 では、高い透過率、焼成 によって原序を半減 の開発や、金属膜との複成 たっていた。 た。 なっていた。 た。 なっていた。 の開発や、金属膜との したしよって 原を 変えて インジウム 使用 方 なって いた。 に は 低抵抗 に は 低抵抗 に し た の は 成 た の 明 発 や 、 金属 膜 と が 高 い 志 過 本 の 明 弟 や 、 も れ し た に は 低 低 点 の に は に は 低 低 点 の に は に は 低 低 点 の に は に は 低 低 近 う に は に は 低 低 近 う に は に は に は に は に は に は に は に は に は に は に た に た に た に は に は 低 低 近 う た っ た に は に は に は に は に は に は に よ っ て が う ん ら れ う 、 の 男 た に は に は に は に は に は に に し に し た に し に し た 、 の た 、 た 、 の た 、 の た 、 の た 、 、 の た 、 の し た に し た 、 の 、 た に し た に し に し に に し た た か し た 、 た 、 た 、 の た の し た に し た に し た た の た 、 一 た 、 た か し し た た た 、 た 、 た た 、 一 た た 、 の た し た た 、 た っ た 、 た た た っ た に た 、 た 、 た 、 た 、 た 、 た た た た た 、 た た 、 た た た っ た た た っ た に に た っ た た た た た た た や し た た た た た た た た た た た た た	

微粒子合成化学

<u>118</u>

2023/6/20

٠

119

未来の太陽電池にも、
応用可能!